Oil Coolers For Temperature Optimization In Hydraulic Systems

Catalog HY10-1700/Americas
WARNING

FAILURE OR IMPROPER SELECTION OR IMPROPER USE OF THE PRODUCTS AND/OR SYSTEMS DESCRIBED HEREIN OR RELATED ITEMS CAN CAUSE DEATH, PERSONAL INJURY AND PROPERTY DAMAGE.

This document and other information from Parker Hannifin Corporation, its subsidiaries and authorized distributors provide product and/or system options for further investigation by users having expertise. It is important that you analyze all aspects of your application, including consequences of any failure and review the information concerning the product or system in the current product catalog. Due to the variety of operating conditions and applications for these products or systems, the user, through its own analysis and testing, is solely responsible for making the final selection of the products and systems and assuring that all performance, safety and warning requirements of the application are met.

The products described herein, including without limitation, product features, specifications, designs, availability and pricing, are subject to change by Parker Hannifin Corporation and its related companies at any time without notice.

Offer of Sale

The items described in this document are hereby offered for sale by Parker Hannifin Corporation, its subsidiaries or its authorized distributors. This offer and its acceptance are governed by the provisions in the “Offer of Sale.”

NOTE: Failure or improper selection or improper use of coolers or related items can cause death, personal injury and property damage. Parker Hannifin shall not be liable for any incidental, consequential or special damages that result from use of the information contained in this publication.
Table of Contents

Oil Coolers .. 4

More Cooling Per $.. 6

ULAC With AC Motor .. 9
 Cooling Performance .. 10
 Pressure Drop .. 11
 Dimensions .. 12
 Order Key and Technical Specifications .. 14

ULOC Cooling System ... 15
 Cooling Performance .. 16
 Dimensions .. 17
 Order Key and Technical Specifications .. 18

ULDC With DC Motor .. 19
 Cooling Performance .. 20
 Pressure Drop .. 20
 Dimensions .. 21
 Order Key and Technical Specifications .. 22

ULHC With Hydraulic Motor ... 23
 Cooling Performance .. 24
 Pressure Drop .. 25
 Dimensions .. 26
 Order Key and Technical Specifications .. 28

Accessories .. 29

Cooling Modules/Combination Cooler ... 30

Product Groups ... 31
Choosing the right cooler requires precise system sizing. The most reliable way to size a cooler is with the aid of our calculation program. This program, together with precise evaluations from our experienced, skilled engineers, gives you the opportunity for more cooling per $ invested.

Overheating – an expensive problem
An underestimated cooling capacity produces a temperature that is too high. The consequences are poor lubricating properties, higher internal leakage, a higher risk of cavitation, damaged components, etc. Overheating leads to a significant drop in efficiency which can be detrimental to our environment.

Temperature optimization – a basic prerequisite for cost-efficient operation
Temperature balance in a hydraulic system occurs when the cooler can cool down the energy input that the system does not consume – the system’s lost energy ($P_{\text{loss}} = P_{\text{cool}} = P_{\text{in}} - P_{\text{used}}$).

Temperature optimization occurs at the temperature at which the oil viscosity is maintained at recommended values. The correct working temperature produces a number of economic and environmental benefits:

- The hydraulic system’s useful life is extended.
- The oil’s useful life is extended.
- The hydraulic system’s availability increases – more operating time and fewer shutdowns.
- Service and repair costs are reduced.
- High efficiency level maintained in continuous operation – the system’s efficiency falls if the temperature exceeds the ideal working temperature.
ULAC with AC Motor
For industrial use – maximum cooling capacity 400 HP*

- **Optimized design** with right choice of materials and components ensures reliable and long lasting cooler with low service and maintenance costs.
- **Compact design** resulting in lighter weight unit yet with higher cooling capacity and lower pressure drop.
- **Easy to maintain** and easy to retrofit into many applications.
- **Quiet fan design** due to optimization of material and blade design.
- **AC motor** – NEMA three phase motors are standard. Wide range of operating voltages and frequencies available.
- **Cooler core** with low pressure drop and high cooling capacity.

ULOC Cooling System
For industrial use – maximum cooling capacity 60 HP

- **Optimized design** and the right choice of materials and components produce a long useful life, high availability and low service and maintenance costs.
- **Integrated** circulation pump produces an even flow with low pressure pulsations.
- **Easy to maintain** and easy to retrofit in many applications.
- **Compact design** and low weight.
- **Quiet fan** and pump.
- **Cooler core** with low pressure drop and high cooling capacity.

ULDC with DC Motor
For mobile use – maximum cooling capacity 40 HP

- **Optimized design** with right choice of materials and components ensures reliable and long lasting cooler with low service and maintenance costs.
- **Compact design** resulting in lighter weight unit yet with higher cooling capacity and lower pressure drop.
- **Easy to maintain** and easy to retrofit into many applications.
- **DC motor** 12V/24V
- **Quiet fan** and fan motor.

ULHC with Hydraulic Motor
For mobile and industrial use – maximum cooling capacity 215 HP

- **Optimized design** and the right choice of materials and components produce a long useful life, high availability and low service and maintenance costs.
- **Compact design** resulting in lighter weight unit yet with higher cooling capacity and lower pressure drop.
- **Easy to maintain** and easy to retrofit into many applications.
- **Hydraulic motor** with displacement from 8.4 cc/rev to 25.2 cc/rev.
- **Collar bearing** for fan motor on larger models provides longer operating life.
- **Quiet fan design** due to optimization of material and blade design.
- **Cooler core** with low pressure drop and high cooling capacity.

*At 250 gpm and 70 °F ITD
More Cooling Per $
with precise calculations and our engineers’ support

Optimal sizing produces efficient cooling.
Correct sizing requires knowledge and experience. Our calculation program, combined with our engineers’ support, gives you access to this very knowledge and experience. The result is more cooling per $ invested.
The user-friendly calculation program can be downloaded from www.olaerusa.com

In-depth system review as an added value.
A more wide-ranging review of the hydraulic system is often a natural element of cooling calculations. Other potential system improvements can then be discussed – e.g. filtering, offline or online cooling, etc. Contact us for further guidance and information.

Parker’s quality and performance guarantee assures you of maximum system performance and reliability.
A continual desire for more cost efficient and environmentally friendly hydraulic systems requires continuous development. Areas where we are continuously seeking to improve performance include cooling capacity, noise level, pressure drop and fatigue.

Meticulous quality and performance tests are conducted in our laboratory. All tests and measurements take place in accordance with standardized methods - cooling capacity in accordance with EN1048, noise level ISO 3743, pressure drop EN 1048 and fatigue ISO 10771-1. For more information about our standardized tests, ask for “Parker’s blue book – a manual for more reliable cooler purchasing.”
Calculate the cooling capacity requirement

- Cooling capacity requirement?
- Installed horse power
- Flow? Pressure? Pump efficiency?
- Measure in your existing unit
- Contact Olaer USA representative

Theoretical horse power losses

Choose the right kind of cooler

Enter your values

Air Oil Cooler Calculation
ULAC, ULBC, ULHC and ULDC

www.parker.com

... get suggested solution
The ULAC oil cooler with AC motor is optimized for use in the industrial sector. Together with a wide range of accessories, the ULAC cooler is suitable for installation in most applications and environments.

- Optimized design with right choice of materials and components ensures a reliable and long lasting cooler with low service and maintenance costs.
- Compact design resulting in lighter weight unit yet with higher cooling capacity and lower pressure drop.
- Easy to maintain and easy to retrofit into many applications.
- Quiet fan design due to optimization of material and blade design.
- AC motor – NEMA three phase motors are standard. Wide range of operating voltages and frequencies available.
- Cooler core with low pressure drop and high cooling capacity.
ULAC Cooling Performance

The cooling capacity curves are based on an ETD (Entering Temperature Difference) of 1 °F. For example, oil temperature of 140 °F and air temperature of 70 °F yields a temperature difference of 70 °F. Multiply the number from the cooling graphs corresponding to the specific flow rate by the ETD for the particular application to get the total heat duty.

Cooling capacity tolerance ± 10%.
Cooling Performance & Pressure Drop ULAC 200 K

- **BTU/HR/ºF**
 - 16,500
 - 14,500
 - 12,500
 - 10,500
 - 8,500
 - 6,500
 - 4,500
 - 2,500
 - 500

- **Pressure Drop at 150 SSU (psi)**

- **Oil Flow Rate (gpm)**
 - 0
 - 50
 - 100
 - 150
 - 200
 - 250
 - 300

Cooling capacity tolerance ± 10%.

Pressure Drop ULAC 007-ULAC 112

- **Pressure drop at 150 SSU (psi)**
 - 0
 - 20
 - 40
 - 60
 - 80
 - 100

- **Oil Flow Rate (gpm)**
 - 0
 - 20
 - 40
 - 60
 - 80

Pressure Drop Correction Factor for other viscosities.
<table>
<thead>
<tr>
<th>TYPE</th>
<th>Acoustic Pressure Level LpA dB(A) 3 Ft.*</th>
<th>No. Of Poles/Capacity HP</th>
<th>Weight Lbs. (Approx.)</th>
<th>P SAE O-Ring</th>
<th>Q SAE O-Ring Boss</th>
</tr>
</thead>
<tbody>
<tr>
<td>ULAC 007B</td>
<td>69</td>
<td>4/0.5</td>
<td>33</td>
<td>½" (#8)</td>
<td>1" (#16)</td>
</tr>
<tr>
<td>ULAC 011B</td>
<td>71</td>
<td>4/0.5</td>
<td>44</td>
<td>½" (#8)</td>
<td>1" (#16)</td>
</tr>
<tr>
<td>ULAC 016B</td>
<td>74</td>
<td>4/0.5</td>
<td>53</td>
<td>½" (#8)</td>
<td>1" (#16)</td>
</tr>
<tr>
<td>ULAC 023D</td>
<td>81</td>
<td>4/1</td>
<td>79</td>
<td>½" (#8)</td>
<td>1" (#16)</td>
</tr>
<tr>
<td>ULAC 033D</td>
<td>82</td>
<td>4/1</td>
<td>115</td>
<td>½" (#8)</td>
<td>1¼" (#20)</td>
</tr>
<tr>
<td>ULAC 033F</td>
<td>86</td>
<td>4/3</td>
<td>170</td>
<td>½" (#8)</td>
<td>1¼" (#20)</td>
</tr>
<tr>
<td>ULAC 044D</td>
<td>83</td>
<td>4/1</td>
<td>143</td>
<td>½" (#8)</td>
<td>1¼" (#20)</td>
</tr>
<tr>
<td>ULAC 044F</td>
<td>87</td>
<td>4/3</td>
<td>197</td>
<td>½" (#8)</td>
<td>1¼" (#20)</td>
</tr>
<tr>
<td>ULAC 058G</td>
<td>90</td>
<td>4/5</td>
<td>264</td>
<td>⅜" (#12)</td>
<td>1½" (#24)</td>
</tr>
<tr>
<td>ULAC 078G</td>
<td>92</td>
<td>4/5</td>
<td>434</td>
<td>⅜" (#12)</td>
<td>1½" (#24)</td>
</tr>
<tr>
<td>ULAC 112H</td>
<td>96</td>
<td>4/7.5</td>
<td>542</td>
<td>⅜" (#12)</td>
<td>1½" (#24)</td>
</tr>
<tr>
<td>ULAC 200K</td>
<td>93</td>
<td>6/15</td>
<td>1,030</td>
<td>NA</td>
<td>CODE 61 SAE 2" FLANGE</td>
</tr>
</tbody>
</table>

Noise level tolerance ± 3 dB(A).
<table>
<thead>
<tr>
<th>TYPE</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>H</th>
<th>I</th>
<th>J</th>
<th>K</th>
<th>L</th>
<th>M</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>ULAC 007B</td>
<td>5.2</td>
<td>6.3</td>
<td>3.2</td>
<td>8.0</td>
<td>0.24</td>
<td>11.7</td>
<td>15.6</td>
<td>8.0</td>
<td>14.4</td>
<td>20.1</td>
<td>8.4</td>
<td>19.8</td>
<td>8.8</td>
<td>0.35</td>
</tr>
<tr>
<td>ULAC 011B</td>
<td>5.4</td>
<td>9.0</td>
<td>3.2</td>
<td>8.0</td>
<td>0.12</td>
<td>14.3</td>
<td>18.5</td>
<td>8.0</td>
<td>17.3</td>
<td>20.1</td>
<td>9.8</td>
<td>20.8</td>
<td>9.8</td>
<td>0.35</td>
</tr>
<tr>
<td>ULAC 016B</td>
<td>5.2</td>
<td>11.7</td>
<td>3.2</td>
<td>8.0</td>
<td>0.28</td>
<td>17.0</td>
<td>20.7</td>
<td>8.0</td>
<td>19.5</td>
<td>20.1</td>
<td>10.9</td>
<td>21.6</td>
<td>10.7</td>
<td>0.35</td>
</tr>
<tr>
<td>ULAC 023D</td>
<td>5.2</td>
<td>14.9</td>
<td>3.2</td>
<td>14.0</td>
<td>0.20</td>
<td>20.2</td>
<td>24.0</td>
<td>14.0</td>
<td>22.8</td>
<td>20.1</td>
<td>12.6</td>
<td>22.2</td>
<td>11.3</td>
<td>0.35</td>
</tr>
<tr>
<td>ULAC 033D</td>
<td>5.2</td>
<td>19.1</td>
<td>3.2</td>
<td>14.0</td>
<td>NA</td>
<td>24.5</td>
<td>28.4</td>
<td>14.0</td>
<td>27.2</td>
<td>20.1</td>
<td>14.8</td>
<td>23.1</td>
<td>12.5</td>
<td>0.35</td>
</tr>
<tr>
<td>ULAC 033F</td>
<td>5.2</td>
<td>19.1</td>
<td>3.2</td>
<td>14.0</td>
<td>NA</td>
<td>24.5</td>
<td>28.4</td>
<td>14.0</td>
<td>27.2</td>
<td>24.0</td>
<td>14.8</td>
<td>25.6</td>
<td>12.5</td>
<td>0.55</td>
</tr>
<tr>
<td>ULAC 044D</td>
<td>4.6</td>
<td>26.1</td>
<td>3.2</td>
<td>14.0</td>
<td>NA</td>
<td>31.5</td>
<td>34.1</td>
<td>14.0</td>
<td>27.2</td>
<td>20.1</td>
<td>17.6</td>
<td>24.1</td>
<td>13.3</td>
<td>0.35</td>
</tr>
<tr>
<td>ULAC 044F</td>
<td>4.6</td>
<td>26.1</td>
<td>3.2</td>
<td>14.0</td>
<td>NA</td>
<td>31.5</td>
<td>34.1</td>
<td>14.0</td>
<td>27.2</td>
<td>24.0</td>
<td>18.3</td>
<td>26.6</td>
<td>13.5</td>
<td>0.55</td>
</tr>
<tr>
<td>ULAC 058G</td>
<td>5.2</td>
<td>26.1</td>
<td>3.2</td>
<td>20.0</td>
<td>NA</td>
<td>31.5</td>
<td>35.4</td>
<td>20.0</td>
<td>34.2</td>
<td>24.0</td>
<td>18.3</td>
<td>29.9</td>
<td>15.2</td>
<td>0.55</td>
</tr>
<tr>
<td>ULAC 078G</td>
<td>5.2</td>
<td>32.3</td>
<td>3.9</td>
<td>26.8</td>
<td>NA</td>
<td>38.9</td>
<td>41.4</td>
<td>20.4</td>
<td>40.2</td>
<td>35.4</td>
<td>21.1</td>
<td>30.9</td>
<td>16.2</td>
<td>0.55</td>
</tr>
<tr>
<td>ULAC 112H</td>
<td>5.1</td>
<td>38.8</td>
<td>3.9</td>
<td>31.1</td>
<td>0.14</td>
<td>45.4</td>
<td>47.8</td>
<td>23.6</td>
<td>46.7</td>
<td>35.4</td>
<td>24.4</td>
<td>31.9</td>
<td>17.2</td>
<td>0.55</td>
</tr>
<tr>
<td>ULAC 200K</td>
<td>7.2</td>
<td>50.9</td>
<td>5.0</td>
<td>49.6</td>
<td>1.2</td>
<td>61.0</td>
<td>64.2</td>
<td>55.9</td>
<td>59.4</td>
<td>35.4</td>
<td>32.7</td>
<td>41.5</td>
<td>18.7</td>
<td>0.71</td>
</tr>
</tbody>
</table>

All dimensions listed above are in inches.
Technical Specifications

FLUID COMBINATIONS
- Mineral oil
- Oil/water emulsion
- Water glycol
- Phosphate ester

MATERIAL
- Cooler core: Aluminum
- Fan blades/hub: Glass fiber reinforced polypropylene/Aluminum
- Fan housing: Steel
- Fan guard: Steel
- Other parts: Steel
- Surface treatment: Electrostatically powder-coated

COOLER CORE
- Maximum static working pressure: 300 psi
- Dynamic working pressure: 200 psi*
- Heat transfer tolerance: ± 6 %
- Maximum oil inlet temperature: 250 °F
* Tested in accordance with ISO/DIS 10771-1

COOLING CAPACITY CURVES
Cooling capacity curves are based on testing in accordance with EN1048 with ISO VG 46.

CONTACT PARKER FOR ADVICE ON
- Oil temperatures > 250 °F
- Oil viscosity > 100 cSt / 500 SSU
- Aggressive environments
- Environments with heavy airborne particulates
- High-altitude locations

Order Key for ULAC Oil Coolers

All positions must be filled in when ordering.

EXAMPLE:

<table>
<thead>
<tr>
<th>ULAC</th>
<th>007B</th>
<th>M</th>
<th>100</th>
<th>SA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Series</td>
<td>Model</td>
<td>Motor Type</td>
<td>Thermostat</td>
<td>Core Bypass</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
</tbody>
</table>

1. OIL COOLER SERIES WITH AC MOTOR; ULAC

2. COOLER SIZE/MODEL

3. MOTOR TYPE
- No motor = W
- Three-phase 190/380V 50 Hz, 208-230/460V 60 Hz = M'
- Three-phase 208-230/460V 60 Hz = N
- Three-phase 230/460V 60 Hz = P
- Three-phase 575V 60 Hz = Q
- Single-phase 115/230V 60 Hz = R
- Single-phase 230 V 60 Hz = S
- Explosion proof, Division 1, Class 1 Group D, Class II Group F & G, T3C = X
- Not listed, consult Olaer USA = Z

* The M-motor is our standard motor sizes 1 HP and lower. The performance at 50 Hz will be reduced by approximately 10%.

4. THERMOSTWITCH
- No thermostat = 000
- 100 °F = 100
- 120 °F = 120
- 140 °F = 140
- 160 °F = 160
- 175 °F = 175
- 195 °F = 195
- Not listed, consult Accumulator and Cooler Division = ZZZ

5. CORE BYPASS*
- No Bypass = SW
- 20 psi External Hose Bypass (standard option) = SA
- 65 psi External Hose Bypass (standard option) = SB
- 30 psi External Tube Bypass = SG
- 75 psi External Tube Bypass = SH
- 120 psi External Tube Bypass = SJ
- 120 °F External Thermo-Bypass = SM
- 140 °F External Thermo-Bypass = SN
- 160 °F External Thermo-Bypass = SP
- 195 °F External Thermo-Bypass = SQ
- Full Flow External Bypass = SF

* The standard cores are single pass. Two pass cores and other options available upon request, please consult Accumulator and Cooler Division.

The information in this brochure is subject to change without prior notice.
The ULOC cooling system with three-phase AC motor is optimized for use in the industrial sector. The system is supplied ready for installation. An integrated circulation pump makes it possible to cool and treat the oil in a separate circuit – offline cooling. Together with a wide range of accessories, the ULOC cooling system is suitable for installation in most applications and environments.

- Optimized design with right choice of materials and components ensures a reliable and long lasting cooler with low service and maintenance costs.
- Integrated circulation pump produces and even flow with low pressure pulsations.
- Easy to maintain and easy to retrofit in many applications.
- Compact design and low weight.
- Quiet fan and fan motor.
- Cooler core with low pressure drop and high cooling capacity.
<table>
<thead>
<tr>
<th>TYPE</th>
<th>Nom. Oil Flow Rate (gpm)</th>
<th>Cooling Capacity at 50 °F ETD (Btu/hr)</th>
<th>Cooling Capacity Btu/hr/°F</th>
<th>Acoustic Pressure Level LpA dB(A) 3 Ft.*</th>
<th>Motor Capacity / No. Of Poles HP</th>
<th>Motor</th>
</tr>
</thead>
<tbody>
<tr>
<td>ULOC 007D - A</td>
<td>6.3</td>
<td>15,500</td>
<td>310</td>
<td>71</td>
<td>1/4</td>
<td>1-4-143TC</td>
</tr>
<tr>
<td>ULOC 007D - B</td>
<td>12.7</td>
<td>19,000</td>
<td>380</td>
<td>71</td>
<td>1/4</td>
<td>1-4-143TC</td>
</tr>
<tr>
<td>ULOC 007E - C</td>
<td>19.0</td>
<td>21,000</td>
<td>420</td>
<td>72</td>
<td>2/4</td>
<td>2-4-143TC</td>
</tr>
<tr>
<td>ULOC 007E - D</td>
<td>25.4</td>
<td>22,500</td>
<td>450</td>
<td>72</td>
<td>2/4</td>
<td>2-4-143TC</td>
</tr>
<tr>
<td>ULOC 011D - A</td>
<td>6.3</td>
<td>24,000</td>
<td>480</td>
<td>74</td>
<td>1/4</td>
<td>1-4-143TC</td>
</tr>
<tr>
<td>ULOC 011D - B</td>
<td>12.7</td>
<td>28,500</td>
<td>570</td>
<td>74</td>
<td>1/4</td>
<td>1-4-143TC</td>
</tr>
<tr>
<td>ULOC 011E - C</td>
<td>19.0</td>
<td>32,000</td>
<td>640</td>
<td>74</td>
<td>2/4</td>
<td>2-4-143TC</td>
</tr>
<tr>
<td>ULOC 011E - D</td>
<td>25.4</td>
<td>34,500</td>
<td>690</td>
<td>74</td>
<td>2/4</td>
<td>2-4-143TC</td>
</tr>
<tr>
<td>ULOC 016E - A</td>
<td>6.3</td>
<td>33,500</td>
<td>670</td>
<td>78</td>
<td>2/4</td>
<td>2-4-143TC</td>
</tr>
<tr>
<td>ULOC 016E - B</td>
<td>12.7</td>
<td>41,000</td>
<td>820</td>
<td>78</td>
<td>2/4</td>
<td>2-4-143TC</td>
</tr>
<tr>
<td>ULOC 016E - C</td>
<td>19.0</td>
<td>47,000</td>
<td>940</td>
<td>78</td>
<td>2/4</td>
<td>2-4-143TC</td>
</tr>
<tr>
<td>ULOC 016E - D</td>
<td>25.4</td>
<td>50,000</td>
<td>1,000</td>
<td>78</td>
<td>2/4</td>
<td>2-4-143TC</td>
</tr>
<tr>
<td>ULOC 023F - B</td>
<td>12.7</td>
<td>60,000</td>
<td>1,200</td>
<td>82</td>
<td>3/4</td>
<td>3-4-182TC</td>
</tr>
<tr>
<td>ULOC 023F - C</td>
<td>19.0</td>
<td>65,000</td>
<td>1,300</td>
<td>82</td>
<td>3/4</td>
<td>3-4-182TC</td>
</tr>
<tr>
<td>ULOC 023F - D</td>
<td>25.4</td>
<td>70,000</td>
<td>1,400</td>
<td>82</td>
<td>3/4</td>
<td>3-4-182TC</td>
</tr>
<tr>
<td>ULOC 033G - C</td>
<td>19.0</td>
<td>80,000</td>
<td>1,600</td>
<td>87</td>
<td>5/4</td>
<td>5-4-182TC</td>
</tr>
<tr>
<td>ULOC 033G - D</td>
<td>25.4</td>
<td>90,000</td>
<td>1,800</td>
<td>87</td>
<td>5/4</td>
<td>5-4-184TC</td>
</tr>
<tr>
<td>ULOC 044G - C</td>
<td>19.0</td>
<td>95,000</td>
<td>1,900</td>
<td>88</td>
<td>5/4</td>
<td>5-4-182TC</td>
</tr>
<tr>
<td>ULOC 044G - D</td>
<td>25.4</td>
<td>105,000</td>
<td>2,100</td>
<td>88</td>
<td>5/4</td>
<td>5-4-182TC</td>
</tr>
</tbody>
</table>

Electric motors specified are calculated for max. Working pressure 90 psi at 125 cSt and 50 Hz, 60 psi at 125 cSt and 60 Hz. If you require higher pressure, please contact us for a choice of motors with a higher output.

*Noise level tolerance ± 3 dB(A).
Table

<table>
<thead>
<tr>
<th>TYPE</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>H</th>
<th>I</th>
<th>J</th>
<th>K</th>
<th>L0</th>
<th>M</th>
</tr>
</thead>
<tbody>
<tr>
<td>ULOC 007D - A</td>
<td>5.2</td>
<td>6.3</td>
<td>8.0</td>
<td>14.4</td>
<td>15.6</td>
<td>0.2</td>
<td>2.0</td>
<td>20.1</td>
<td>8.5</td>
<td>26.1</td>
<td>8.9</td>
<td>0.35</td>
<td>1" (#16)</td>
</tr>
<tr>
<td>ULOC 007D - B</td>
<td>5.2</td>
<td>6.3</td>
<td>8.0</td>
<td>14.4</td>
<td>15.6</td>
<td>0.2</td>
<td>2.0</td>
<td>20.1</td>
<td>8.5</td>
<td>26.6</td>
<td>8.9</td>
<td>0.35</td>
<td>1" (#16)</td>
</tr>
<tr>
<td>ULOC 007E - C</td>
<td>5.2</td>
<td>6.3</td>
<td>8.0</td>
<td>14.4</td>
<td>15.6</td>
<td>0.2</td>
<td>2.0</td>
<td>20.1</td>
<td>8.5</td>
<td>27.1</td>
<td>8.9</td>
<td>0.35</td>
<td>1" (#16)</td>
</tr>
<tr>
<td>ULOC 007E - D</td>
<td>5.2</td>
<td>6.3</td>
<td>8.0</td>
<td>14.4</td>
<td>15.6</td>
<td>0.2</td>
<td>2.0</td>
<td>20.1</td>
<td>8.5</td>
<td>27.6</td>
<td>8.9</td>
<td>0.35</td>
<td>1" (#16)</td>
</tr>
<tr>
<td>ULOC 011D - A</td>
<td>5.3</td>
<td>9.0</td>
<td>8.0</td>
<td>17.3</td>
<td>18.5</td>
<td>0.1</td>
<td>2.0</td>
<td>20.1</td>
<td>9.9</td>
<td>27.0</td>
<td>9.9</td>
<td>0.35</td>
<td>1" (#16)</td>
</tr>
<tr>
<td>ULOC 011D - B</td>
<td>5.3</td>
<td>9.0</td>
<td>8.0</td>
<td>17.3</td>
<td>18.5</td>
<td>0.1</td>
<td>2.0</td>
<td>20.1</td>
<td>9.6</td>
<td>27.4</td>
<td>9.8</td>
<td>0.35</td>
<td>1" (#16)</td>
</tr>
<tr>
<td>ULOC 011E - C</td>
<td>5.4</td>
<td>9.0</td>
<td>8.0</td>
<td>17.3</td>
<td>18.5</td>
<td>0.1</td>
<td>2.0</td>
<td>20.1</td>
<td>9.9</td>
<td>28.0</td>
<td>9.8</td>
<td>0.35</td>
<td>1" (#16)</td>
</tr>
<tr>
<td>ULOC 011E - D</td>
<td>5.4</td>
<td>9.0</td>
<td>8.0</td>
<td>17.3</td>
<td>18.5</td>
<td>0.1</td>
<td>2.0</td>
<td>20.1</td>
<td>9.6</td>
<td>28.5</td>
<td>9.8</td>
<td>0.35</td>
<td>1" (#16)</td>
</tr>
<tr>
<td>ULOC 016E - A</td>
<td>5.1</td>
<td>11.7</td>
<td>8.0</td>
<td>19.5</td>
<td>20.7</td>
<td>0.3</td>
<td>2.0</td>
<td>20.1</td>
<td>11.0</td>
<td>27.7</td>
<td>10.7</td>
<td>0.35</td>
<td>1" (#16)</td>
</tr>
<tr>
<td>ULOC 016E - B</td>
<td>5.1</td>
<td>11.7</td>
<td>8.0</td>
<td>19.5</td>
<td>20.7</td>
<td>0.3</td>
<td>2.0</td>
<td>20.1</td>
<td>11.0</td>
<td>28.2</td>
<td>10.7</td>
<td>0.35</td>
<td>1" (#16)</td>
</tr>
<tr>
<td>ULOC 016E - C</td>
<td>5.1</td>
<td>11.7</td>
<td>8.0</td>
<td>19.5</td>
<td>20.7</td>
<td>0.3</td>
<td>2.0</td>
<td>20.1</td>
<td>11.0</td>
<td>28.8</td>
<td>10.7</td>
<td>0.35</td>
<td>1" (#16)</td>
</tr>
<tr>
<td>ULOC 016E - D</td>
<td>5.1</td>
<td>11.7</td>
<td>8.0</td>
<td>19.5</td>
<td>20.7</td>
<td>0.3</td>
<td>2.0</td>
<td>20.1</td>
<td>10.7</td>
<td>29.3</td>
<td>10.7</td>
<td>0.35</td>
<td>1" (#16)</td>
</tr>
<tr>
<td>ULOC 023F - B</td>
<td>5.2</td>
<td>14.9</td>
<td>14.0</td>
<td>22.8</td>
<td>24.0</td>
<td>0.2</td>
<td>2.0</td>
<td>24.0</td>
<td>12.4</td>
<td>30.7</td>
<td>11.3</td>
<td>0.55</td>
<td>1¼" (#20)</td>
</tr>
<tr>
<td>ULOC 023F - C</td>
<td>5.1</td>
<td>14.9</td>
<td>14.0</td>
<td>22.8</td>
<td>24.0</td>
<td>0.2</td>
<td>2.0</td>
<td>24.0</td>
<td>12.4</td>
<td>31.2</td>
<td>11.3</td>
<td>0.55</td>
<td>1¼" (#20)</td>
</tr>
<tr>
<td>ULOC 023F - D</td>
<td>5.1</td>
<td>14.9</td>
<td>14.0</td>
<td>22.8</td>
<td>24.0</td>
<td>0.2</td>
<td>2.0</td>
<td>24.0</td>
<td>12.4</td>
<td>31.7</td>
<td>11.3</td>
<td>0.55</td>
<td>1¼" (#20)</td>
</tr>
<tr>
<td>ULOC 033G - C</td>
<td>5.2</td>
<td>19.1</td>
<td>14.0</td>
<td>27.2</td>
<td>28.4</td>
<td>-</td>
<td>2.4</td>
<td>24.0</td>
<td>14.6</td>
<td>32.7</td>
<td>12.5</td>
<td>0.55</td>
<td>1¼" (#20)</td>
</tr>
<tr>
<td>ULOC 033G - D</td>
<td>5.2</td>
<td>19.1</td>
<td>14.0</td>
<td>27.2</td>
<td>28.4</td>
<td>-</td>
<td>2.4</td>
<td>24.0</td>
<td>14.9</td>
<td>33.2</td>
<td>12.5</td>
<td>0.55</td>
<td>1¼" (#20)</td>
</tr>
<tr>
<td>ULOC 044G - C</td>
<td>4.5</td>
<td>26.1</td>
<td>14.0</td>
<td>27.2</td>
<td>34.1</td>
<td>-</td>
<td>2.0</td>
<td>24.0</td>
<td>17.4</td>
<td>33.6</td>
<td>13.5</td>
<td>0.55</td>
<td>1¼" (#20)</td>
</tr>
<tr>
<td>ULOC 044G - D</td>
<td>4.5</td>
<td>26.1</td>
<td>14.0</td>
<td>27.2</td>
<td>34.1</td>
<td>-</td>
<td>2.0</td>
<td>24.0</td>
<td>17.4</td>
<td>33.9</td>
<td>13.5</td>
<td>0.55</td>
<td>1¼" (#20)</td>
</tr>
</tbody>
</table>

*Port on the inlet side of the pump is 1½” (#24) SAE O-ring Boss for all models.

All dimensions listed above are in inches.
Order Key for ULOC Cooling Systems

All positions must be filled in when ordering.

EXAMPLE:

<table>
<thead>
<tr>
<th>ULOC</th>
<th>007D</th>
<th>M</th>
<th>A</th>
<th>SA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Series</td>
<td>Model</td>
<td>Motor Type</td>
<td>Pump Flow Rate</td>
<td>Core Bypass</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
</tbody>
</table>

1. OIL COOLER SERIES OFFLINE, WITH PUMP; ULOC

2. COOLER SIZE/MODEL
007D, 007E, 011D, 011E, 016E, 023F, 033G, 044G

3. MOTOR TYPE
No motor = W
Three phase, 190/380V 50 Hz, 208-230/460V 60Hz = M
Three phase, 575V 60Hz = Q
Not listed, consult Accumulator and Cooler Division = Z
Performance at 50 Hz will be reduced by approximately 10%

4. PUMP FLOW RATE (GPM)
6 = A
12 = B
19 = C
25 = D

5. CORE BYPASS*
No Bypass = SW
20 psi External Hose Bypass (standard option) = SA
65 psi External Hose Bypass (standard option) = SB
30 psi External Tube Bypass = SG
75 psi External Tube Bypass = SH
120 psi External Tube Bypass = SJ
120 °F External Thermo-Bypass = SM
140 °F External Thermo-Bypass = SN
160 °F External Thermo-Bypass = SP
195 °F External Thermo-Bypass = SQ

*The standard cores are single pass. Two pass cores and other options available upon request, please consult Accumulator and Cooler Division.

Technical Specifications

<table>
<thead>
<tr>
<th>COOLER CORE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum static working pressure</td>
</tr>
<tr>
<td>Dynamic working pressure</td>
</tr>
<tr>
<td>Heat transfer tolerance</td>
</tr>
<tr>
<td>Maximum oil inlet temperature</td>
</tr>
</tbody>
</table>

* Tested in accordance with ISO/DIS 10771-1

- ULOC is designed primarily for synthetic oils, vegetable oils and mineral oil type HL/HLP in accordance with DIN 51524. Maximum oil temperature 210 °F.
- Maximum negative pressure in the inlet line is 6 psi with an oil-filled pump. Maximum pressure on the pump’s suction side is 8 psi.
- Maximum working pressure for the pump is 150 psi.

Heat transfer tolerance ± 6 %

MATERIAL

Cooler Core	Aluminum
Fan blades/hub	Glass fiber reinforced polypropylene/Aluminum
Fan housing	Steel
Fan guard	Steel
Pump Housing	Aluminum
Other parts	Steel
Surface treatment	Electrostatically powder-coated

CONTACT PARKER FOR ADVICE ON

- Oil temperatures > 250 °F
- Oil viscosity > 100 cSt / 500 SSU
- Aggressive environments
- Environments with heavy airborne particulates
- High-altitude locations

The information in this brochure is subject to change without prior notice.
ULDC With DC Motor
For mobile use – cooling capacity up to 40 HP

The ULDC oil cooler with 12 or 24V DC motor is optimized for use in the mobile industry. Together with a wide range of accessories, the ULDC cooler is suitable for installation in most applications and environments.

- Optimized design with right choice of materials and components ensures a reliable and long lasting cooler with low service and maintenance costs.
- Compact design resulting in lighter weight unit yet with higher cooling capacity and lower pressure drop.
- Easy to maintain and easy to retrofit into many applications.
- DC motor 12V/24V.
- Quiet fan and fan motor.
ULDC Cooling Performance

The cooling capacity curves are based on an ETD (Entering Temperature Difference) of 1 °F. For example, oil temperature of 140 °F and air temperature of 70 °F yields a temperature difference of 70 °F. Multiply the number from the cooling graphs corresponding to the specific flow rate by the ETD for the particular application to get the total heat duty.

Cooling capacity tolerance ± 10%.

* Pressure Drop Correction Factor for other viscosities.
ULDC

<table>
<thead>
<tr>
<th>TYPE</th>
<th>Weight lbs (Approx.)</th>
<th>Acoustic Pressure LpA dB(A) 3 Ft.</th>
<th>Max. Current (Amps.)**</th>
<th>Q SAE O-Ring Boss</th>
</tr>
</thead>
<tbody>
<tr>
<td>ULDC 003</td>
<td>11</td>
<td>68</td>
<td>9</td>
<td>1" (#16)</td>
</tr>
<tr>
<td>ULDC 004</td>
<td>13</td>
<td>63</td>
<td>7</td>
<td>1" (#16)</td>
</tr>
<tr>
<td>ULDC 007</td>
<td>20</td>
<td>71</td>
<td>13</td>
<td>1" (#16)</td>
</tr>
<tr>
<td>ULDC 011</td>
<td>26</td>
<td>75</td>
<td>20</td>
<td>1" (#16)</td>
</tr>
<tr>
<td>ULDC 016</td>
<td>33</td>
<td>75</td>
<td>20</td>
<td>1" (#16)</td>
</tr>
<tr>
<td>ULDC 020</td>
<td>40</td>
<td>82</td>
<td>20</td>
<td>1" (#16)</td>
</tr>
<tr>
<td>ULDC 023</td>
<td>55</td>
<td>75</td>
<td>20</td>
<td>1" (#16)</td>
</tr>
<tr>
<td>ULDC 033</td>
<td>66</td>
<td>75</td>
<td>20</td>
<td>1⅛" (#20)</td>
</tr>
</tbody>
</table>

* Noise level tolerance ± 3 dB(A).
** ULDC-023 & ULDC-033 Cooler assemblies come with two fans each. The indicated max. current is for one fan only.

<table>
<thead>
<tr>
<th>TYPE</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>H</th>
<th>I</th>
<th>J</th>
<th>K</th>
<th>L</th>
<th>M</th>
<th>No dia./oblong</th>
</tr>
</thead>
<tbody>
<tr>
<td>ULDC 003</td>
<td>8.9</td>
<td>2.5</td>
<td>3.5</td>
<td>-</td>
<td>5.2</td>
<td>0.9</td>
<td>7.8</td>
<td>5.3</td>
<td>9.6</td>
<td>5.8</td>
<td>4.6</td>
<td>5.9</td>
<td>4.1</td>
<td>0.35 x 0.55</td>
</tr>
<tr>
<td>ULDC 004</td>
<td>10.0</td>
<td>3.5</td>
<td>3.5</td>
<td>-</td>
<td>6.0</td>
<td>0.9</td>
<td>9.0</td>
<td>5.3</td>
<td>10.5</td>
<td>5.8</td>
<td>5.2</td>
<td>6.0</td>
<td>4.3</td>
<td>0.35 x 0.55</td>
</tr>
<tr>
<td>ULDC 007</td>
<td>13.3</td>
<td>3.7</td>
<td>6.3</td>
<td>3.2</td>
<td>8.0</td>
<td>0.9</td>
<td>11.7</td>
<td>8.0</td>
<td>13.0</td>
<td>10.5</td>
<td>6.8</td>
<td>6.8</td>
<td>4.3</td>
<td>0.35</td>
</tr>
<tr>
<td>ULDC 011</td>
<td>15.6</td>
<td>3.4</td>
<td>9.0</td>
<td>3.2</td>
<td>8.0</td>
<td>0.9</td>
<td>14.3</td>
<td>14.2</td>
<td>15.7</td>
<td>4.0</td>
<td>7.9</td>
<td>8.5</td>
<td>4.9</td>
<td>0.35 x 1.1</td>
</tr>
<tr>
<td>ULDC 016</td>
<td>18.3</td>
<td>3.4</td>
<td>11.7</td>
<td>3.2</td>
<td>8.0</td>
<td>0.9</td>
<td>17.0</td>
<td>16.4</td>
<td>18.3</td>
<td>4.0</td>
<td>9.3</td>
<td>8.3</td>
<td>4.8</td>
<td>0.35 x 1.1</td>
</tr>
<tr>
<td>ULDC 020</td>
<td>20.1</td>
<td>3.0</td>
<td>13.8</td>
<td>2.8</td>
<td>8.0</td>
<td>0.9</td>
<td>18.7</td>
<td>18.5</td>
<td>20.1</td>
<td>4.0</td>
<td>10.1</td>
<td>8.3</td>
<td>4.9</td>
<td>0.35 x 0.55</td>
</tr>
<tr>
<td>ULDC 023</td>
<td>25.0</td>
<td>5.4</td>
<td>14.9</td>
<td>3.2</td>
<td>14.0</td>
<td>-</td>
<td>20.2</td>
<td>-</td>
<td>24.2</td>
<td>11.4</td>
<td>7.9/18.0</td>
<td>8.6</td>
<td>4.9</td>
<td>0.51</td>
</tr>
<tr>
<td>ULDC 033</td>
<td>26.7</td>
<td>3.4</td>
<td>19.1</td>
<td>3.2</td>
<td>14.0</td>
<td>1.0</td>
<td>24.5</td>
<td>-</td>
<td>25.0</td>
<td>11.4</td>
<td>7.9/18.0</td>
<td>10.1</td>
<td>6.5</td>
<td>0.51</td>
</tr>
</tbody>
</table>

All dimensions listed above are in inches.
Order Key for ULDC Oil Coolers

All positions must be filled in when ordering.

EXAMPLE:

<table>
<thead>
<tr>
<th>ULDC</th>
<th>007</th>
<th>A</th>
<th>000</th>
<th>SA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Series</td>
<td>Model</td>
<td>Motor Type</td>
<td>Thermostwitch</td>
<td>Core Bypass</td>
</tr>
</tbody>
</table>

1. OIL COOLER SERIES WITH DC MOTOR; ULDC

2. COOLER SIZE/MODEL
003, 004, 007, 011, 016, 020, 023, 033

3. MOTOR VOLTAGE
12 V = A
24 V = B

4. THERMOSWITCH
No thermostwitch = 000
100 °F = 100
120 °F = 120
140 °F = 140
160 °F = 160
175 °F = 175
195 °F = 195
Not listed, consult Accumulator and Cooler Division = ZZZ

5. CORE BYPASS*
No Bypass = SW
20 psi External Hose Bypass (standard option) = SA
65 psi External Hose Bypass (standard option) = SB
30 psi External Tube Bypass = SG
75 psi External Tube Bypass = SH
120 psi External Tube Bypass = SJ
120 °F External Thermo-Bypass = SM
140 °F External Thermo-Bypass = SN
160 °F External Thermo-Bypass = SP
195 °F External Thermo-Bypass = SQ
Full Flow External Bypass = SF

* The standard cores are single pass. Two pass cores and other options available upon request, please consult Accumulator and Cooler Division.

Technical Specifications

FLUID COMBINATIONS
- Mineral oil
- Oil/water emulsion
- Water glycol
- Phosphate ester

MATERIAL
- Cooler core: Aluminum
- Fan blades/guard: Glass fiber reinforced polypropylene
- Fan housing: Steel
- Other parts: Steel
- Surface treatment: Electrostatically powder-coated

COOLER CORE
- Maximum static working pressure: 300 psi
- Dynamic working pressure: 200 psi*
- Heat transfer tolerance: ± 6%
- Maximum oil inlet temperature: 250 °F
 * Tested in accordance with ISO/DIS 10771-1

COOLING CAPACITY CURVES

The cooling capacity curves in this catalogue are created using oil type ISO VG 46 at 250 °F.

CONTACT PARKER FOR ADVICE ON
- Oil temperatures > 250 °F
- Oil viscosity > 100 cSt / 500 SSU
- Aggressive environments
- Environments with heavy airborne particulates
- High-altitude locations

The information in this brochure is subject to change without prior notice.
The ULHC oil cooler with hydraulic motor is optimized for use in the mobile and industrial sector. Together with a wide range of accessories, the ULHC cooler is suitable for installation in most applications and environments.

- Optimized design with right choice of materials and components ensures a reliable and long lasting cooler with low service and maintenance costs.
- Compact design resulting in lighter weight unit yet with higher cooling capacity and lower pressure drop.
- Easy to maintain and easy to retrofit into many applications.
- Hydraulic motor with displacement from 8.4 cc/rev to 25.2 cc/rev.
- Collar bearing for fan motor on larger models provides longer operating life.
- Quiet fan design due to optimization of material and blade design.
- Cooler core with low pressure drop and high cooling capacity.
ULHC Cooling Performance

The cooling capacity curves are based on an ETD (Entering Temperature Difference) of 1 °F. For example, oil temperature of 140 °F and air temperature of 70 °F yields a temperature difference of 70 °F. Multiply the number from the cooling graphs corresponding to the specific flow rate by the ETD for the particular application to get the total heat duty.
Pressure drop at 150 SSU (psi)

Oil Flow Rate (gpm)

Correction Factor

0 50 150 250 350 450

0 20 40 60 80 100 120

007, 011

016, 023

033

044

058, 078, 112
<table>
<thead>
<tr>
<th>TYPE</th>
<th>Fan Speed (rpm)</th>
<th>Fan Power (HP)</th>
<th>Weight (lbs. Approx.)</th>
<th>Max Speed (rpm)</th>
<th>Acoustic Pressure Level LpA dB(A) 3 Ft*</th>
</tr>
</thead>
<tbody>
<tr>
<td>ULHC 007</td>
<td>1,500</td>
<td>0.13</td>
<td>22</td>
<td>3,500</td>
<td>62</td>
</tr>
<tr>
<td></td>
<td>3,000</td>
<td>0.87</td>
<td>22</td>
<td>3,500</td>
<td>79</td>
</tr>
<tr>
<td>ULHC 011</td>
<td>1,500</td>
<td>0.27</td>
<td>33</td>
<td>3,500</td>
<td>67</td>
</tr>
<tr>
<td></td>
<td>3,000</td>
<td>2.01</td>
<td>33</td>
<td>3,500</td>
<td>82</td>
</tr>
<tr>
<td>ULHC 016</td>
<td>1,500</td>
<td>0.13</td>
<td>40</td>
<td>3,500</td>
<td>60</td>
</tr>
<tr>
<td></td>
<td>3,000</td>
<td>0.47</td>
<td>40</td>
<td>3,500</td>
<td>70</td>
</tr>
<tr>
<td>ULHC 023</td>
<td>1,000</td>
<td>0.20</td>
<td>66</td>
<td>2,840</td>
<td>64</td>
</tr>
<tr>
<td></td>
<td>1,500</td>
<td>0.67</td>
<td>66</td>
<td>2,840</td>
<td>76</td>
</tr>
<tr>
<td>ULHC 033</td>
<td>1,000</td>
<td>0.87</td>
<td>88</td>
<td>2,350</td>
<td>75</td>
</tr>
<tr>
<td></td>
<td>1,500</td>
<td>2.68</td>
<td>88</td>
<td>2,350</td>
<td>85</td>
</tr>
<tr>
<td>ULHC 044</td>
<td>1,000</td>
<td>0.94</td>
<td>123</td>
<td>2,350</td>
<td>77</td>
</tr>
<tr>
<td></td>
<td>1,500</td>
<td>2.68</td>
<td>123</td>
<td>2,350</td>
<td>86</td>
</tr>
<tr>
<td>ULHC 058</td>
<td>750</td>
<td>1.01</td>
<td>170</td>
<td>1,850</td>
<td>75</td>
</tr>
<tr>
<td></td>
<td>1,000</td>
<td>2.41</td>
<td>170</td>
<td>1,850</td>
<td>83</td>
</tr>
<tr>
<td>ULHC 078</td>
<td>750</td>
<td>0.94</td>
<td>245</td>
<td>1,690</td>
<td>81</td>
</tr>
<tr>
<td></td>
<td>1,000</td>
<td>2.15</td>
<td>245</td>
<td>1,690</td>
<td>88</td>
</tr>
<tr>
<td>ULHC 112</td>
<td>750</td>
<td>2.28</td>
<td>276</td>
<td>1,440</td>
<td>86</td>
</tr>
<tr>
<td></td>
<td>1,000</td>
<td>5.36</td>
<td>276</td>
<td>1,440</td>
<td>92</td>
</tr>
</tbody>
</table>

* Noise level tolerance ± 3 dB(A).
<table>
<thead>
<tr>
<th>TYPE</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>H</th>
<th>I</th>
<th>J</th>
<th>K</th>
</tr>
</thead>
<tbody>
<tr>
<td>ULHC 007</td>
<td>5.2</td>
<td>6.3</td>
<td>3.2</td>
<td>8.0</td>
<td>0.2</td>
<td>11.7</td>
<td>15.6</td>
<td>8.0</td>
<td>14.4</td>
<td>20.1</td>
<td>7.8</td>
</tr>
<tr>
<td>ULHC 011</td>
<td>5.4</td>
<td>9.0</td>
<td>3.2</td>
<td>8.0</td>
<td>0.1</td>
<td>14.3</td>
<td>18.5</td>
<td>8.0</td>
<td>17.3</td>
<td>20.1</td>
<td>9.2</td>
</tr>
<tr>
<td>ULHC 016</td>
<td>5.1</td>
<td>11.7</td>
<td>3.2</td>
<td>8.0</td>
<td>0.3</td>
<td>17.0</td>
<td>20.7</td>
<td>8.0</td>
<td>19.5</td>
<td>20.1</td>
<td>11.6</td>
</tr>
<tr>
<td>ULHC 023</td>
<td>5.2</td>
<td>14.9</td>
<td>3.2</td>
<td>14.0</td>
<td>0.2</td>
<td>20.2</td>
<td>24.0</td>
<td>14.0</td>
<td>22.8</td>
<td>20.1</td>
<td>12.0</td>
</tr>
<tr>
<td>ULHC 033</td>
<td>5.2</td>
<td>19.1</td>
<td>3.2</td>
<td>14.0</td>
<td>-</td>
<td>24.5</td>
<td>28.4</td>
<td>14.0</td>
<td>27.2</td>
<td>20.1</td>
<td>14.2</td>
</tr>
<tr>
<td>ULHC 044</td>
<td>4.6</td>
<td>26.1</td>
<td>3.2</td>
<td>14.0</td>
<td>-</td>
<td>31.5</td>
<td>34.1</td>
<td>14.0</td>
<td>27.2</td>
<td>20.1</td>
<td>17.0</td>
</tr>
<tr>
<td>ULHC 058</td>
<td>5.2</td>
<td>26.1</td>
<td>3.2</td>
<td>20.0</td>
<td>-</td>
<td>31.5</td>
<td>35.4</td>
<td>20.0</td>
<td>34.2</td>
<td>20.1</td>
<td>17.6</td>
</tr>
<tr>
<td>ULHC 078</td>
<td>5.2</td>
<td>32.3</td>
<td>3.9</td>
<td>26.8</td>
<td>-</td>
<td>38.9</td>
<td>41.4</td>
<td>20.4</td>
<td>40.2</td>
<td>24.0</td>
<td>20.7</td>
</tr>
<tr>
<td>ULHC 112</td>
<td>5.1</td>
<td>38.8</td>
<td>3.9</td>
<td>31.1</td>
<td>0.2</td>
<td>45.4</td>
<td>47.8</td>
<td>23.6</td>
<td>46.7</td>
<td>24.0</td>
<td>23.9</td>
</tr>
</tbody>
</table>

All dimensions listed above are in inches.

<table>
<thead>
<tr>
<th>TYPE</th>
<th>L (max)</th>
<th>M</th>
<th>P SAE O-ring</th>
<th>Q SAE O-ring Boss</th>
<th>Motor Selection</th>
</tr>
</thead>
<tbody>
<tr>
<td>ULHC 007</td>
<td>14.4</td>
<td>8.9</td>
<td>½" (#8)</td>
<td>1" (#16)</td>
<td>A - F</td>
</tr>
<tr>
<td>ULHC 011</td>
<td>15.3</td>
<td>9.8</td>
<td>½" (#8)</td>
<td>1" (#16)</td>
<td>A - F</td>
</tr>
<tr>
<td>ULHC 016</td>
<td>16.3</td>
<td>10.8</td>
<td>½" (#8)</td>
<td>1" (#16)</td>
<td>A - F</td>
</tr>
<tr>
<td>ULHC 023</td>
<td>16.6</td>
<td>11.1</td>
<td>½" (#8)</td>
<td>1" (#16)</td>
<td>A - F</td>
</tr>
<tr>
<td>ULHC 033</td>
<td>19.7</td>
<td>12.5</td>
<td>½" (#8)</td>
<td>1¼" (#20)</td>
<td>A - F</td>
</tr>
<tr>
<td>ULHC 044</td>
<td>20.7</td>
<td>13.5</td>
<td>½" (#8)</td>
<td>1¼" (#20)</td>
<td>A - F</td>
</tr>
<tr>
<td>ULHC 058</td>
<td>22.4</td>
<td>15.3</td>
<td>¾" (#12)</td>
<td>1½" (#24)</td>
<td>A - F</td>
</tr>
<tr>
<td>ULHC 078</td>
<td>21.4</td>
<td>16.3</td>
<td>¾" (#12)</td>
<td>1½" (#24)</td>
<td>B - F</td>
</tr>
<tr>
<td>ULHC 112</td>
<td>24.4</td>
<td>17.2</td>
<td>¾" (#12)</td>
<td>1½" (#24)</td>
<td>D - F</td>
</tr>
</tbody>
</table>
Order Key for ULHC Oil Coolers

All positions must be filled in when ordering.

<table>
<thead>
<tr>
<th>Example:</th>
</tr>
</thead>
<tbody>
<tr>
<td>ULHC</td>
</tr>
<tr>
<td>Series</td>
</tr>
<tr>
<td>1</td>
</tr>
</tbody>
</table>

1. OIL COOLER SERIES WITH HYDRAULIC MOTOR; ULHC

2. COOLER SIZE/MODEL

007, 011, 016, 023, 033, 044, 058, 078 and 112.

3. HYDRAULIC MOTOR, DISPLACEMENT

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
<td>E</td>
<td>F</td>
</tr>
</tbody>
</table>

Not listed, consult Accumulator and Cooler Division = Z

4. THERMO CONTACT

<table>
<thead>
<tr>
<th>Thermoswitch</th>
<th>100 °F</th>
<th>120 °F</th>
<th>140 °F</th>
<th>160 °F</th>
<th>175 °F</th>
<th>195 °F</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>100</td>
<td>120</td>
<td>140</td>
<td>160</td>
<td>175</td>
<td>195</td>
</tr>
</tbody>
</table>

Not listed, consult Accumulator and Cooler Division = ZZZ

5. CORE BYPASS*

<table>
<thead>
<tr>
<th>Bypass Type</th>
<th>20 psi External Hose Bypass (standard option)</th>
<th>65 psi External Hose Bypass (standard option)</th>
<th>30 psi External Tube Bypass</th>
<th>75 psi External Tube Bypass</th>
<th>120 psi External Tube Bypass</th>
<th>120 °F External Thermo-Bypass</th>
<th>140 °F External Thermo-Bypass</th>
<th>160 °F External Thermo-Bypass</th>
<th>195 °F External Thermo-Bypass</th>
<th>Full Flow External Bypass</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>SW</td>
<td>SB</td>
<td>SG</td>
<td>SH</td>
<td>SJ</td>
<td>SM</td>
<td>SN</td>
<td>SP</td>
<td>SQ</td>
<td>SF</td>
</tr>
</tbody>
</table>

*The standard cores are single pass. Two pass cores and other options available upon request, please consult Accumulator and Cooler Division.

Technical Specifications

FLUID COMBINATIONS

- Mineral oil
- Oil/water emulsion
- Water glycol
- Phosphate ester

MATERIAL

- Cooler core: Aluminum
- Fan blades/Housing: Glass fiber reinforced polypropylene/Aluminum
- Fan housing: Steel
- Fan guard: Steel
- Other parts: Steel
- Surface treatment: Electrostatically powder-coated

COOLER CORE

- Maximum static operating pressure: 300 psi
- Dynamic operating pressure: 200 psi*
- Heat transfer tolerance: ± 6 %
- Maximum oil inlet temperature: 250 °F

* Tested in accordance with ISO/DIS 10771-1

COOLING CAPACITY CURVES

The cooling capacity curves in this catalog are being created using oil type ISO VG 46 at 140 °F.

CONTACT PARKER FOR ADVICE ON

- Oil temperatures > 250 °F
- Oil viscosity > 100 cSt / 500 SSU
- Aggressive environments
- Environments with heavy airborne particulates
- High-altitude locations

The information in this brochure is subject to change without prior notice.
Take the next step
Choose the right accessories

Supplementing a hydraulic system with a cooler and proper accessories or an accumulator gives you increased system up time and a longer expected life as well as lower service and repair costs. All applications and operating environments are unique. A well-planned choice of the following accessories can thus further improve your hydraulic system. Please contact Accumulator and Cooler Division for guidance and information.

Pressure-controlled bypass valve *Integrated*
Allows the oil to bypass the cooler core if the pressure drop is too high. Reduces the risk of the cooler bursting, e.g. in connection with cold starts and temporary peaks in pressure or flow. Available for single-pass or two-pass core design.

Smart DC Drive speed regulation
For cost-efficient operation and better environmental consideration through speed regulated fan control – the higher the temperature, the higher the fan speed.

Temperature-controlled bypass valve *Integrated*
Same function as the pressure-controlled by-pass valve, but with a temperature-controlled opening pressure – the hotter the oil, the higher the opening pressure. Available for single-pass or two-pass core design.

Stone guard/Dust guard
Protects components and systems from tough conditions.

Thermo contact
Sensor with fixed set point for temperature warnings and cost efficient operation with automatic switching on and off of the fan motor thereby reducing the energy usage.

Temperature-controlled 3-way valve *External*
Same function as the temperature-controlled bypass valve, but positioned externally.

Note: Must be ordered separately.

Lifting eyes
For simple installation and relocation.
A close collaboration between our application engineers, designers and you as the customer during the whole project will result in a high-quality product. The final product will be a tailor-made cooler, which always meets your unique needs.

Extensive choices

Long-term experience from the mobile field has provided us with a unique ability to deliver the ideal combination cooler solution. Depending on the conditions, the cooler fan can be operated by the diesel engine on the machine or by a hydraulic motor or a DC motor. We can also supply many different cooler combination options. A frequent combination is the “side-by-side”-cooler, where the coolers are placed side-by-side, no matter the media, such as a water cooler, an oil cooler and an intercooler. Another solution is the “sandwich”-cooler, where the coolers are placed in front of each other. The solution could also be a combination of these two. No matter which combination will be used, the pressure drop and the heat dissipation across the core will always be optimal.
At Parker, we’re guided by a relentless drive to help our customers become more productive and achieve higher levels of profitability by engineering the best systems for their requirements. It means looking at customer applications from many angles to find new ways to create value. Whatever the motion and control technology need, Parker has the experience, breadth of product and global reach to consistently deliver. No company knows more about motion and control technology than Parker. For further info call 1 800 C-Parker (1 800 272 7537).

Aerospace
Key Markets
- Aftermarket services
- Commercial transports
- Engines
- General & business aviation
- Helicopters
- Launch vehicles
- Military aircraft
- Missiles
- Power generation
- Regional transports
- Unmanned aerial vehicles

Key Products
- Control systems & actuation products
- Engine systems & components
- Fluid conveyance systems & components
- Fluid metering, delivery & atomization devices
- Fuel systems & components
- Fuel tanking systems
- Hydraulics systems & components
- Thermal management
- Wheels & brakes

Automation
Key Markets
- Renewable energy
- Conveyance & material handling
- Factory automation
- Food & beverage
- Life sciences & medical
- Machine tools
- Packaging machinery
- Paper machinery
- Plastic machinery
- Primary metals
- Safety & security
- Semiconductor & electronics
- Transportation & automotive

Key Products
- AG/DC drives & systems
- Air preparation
- Electric actuators, pony robots & skids
- Human machine interfaces
- Inverters
- Manifolds
- Miniature fluids
- Pneumatic actuators & grippers
- Pneumatic valves & controls
- Rotary actuators
- Stepper motors, servo motors, drives & controls
- Structural extrusions
- Vacuum generators, cups & sensors

Climate & Industrial Controls
Key Markets
- Agriculture
- Air conditioning
- Construction Machinery
- Food & beverage
- Industrial machinery
- Life sciences
- Oil & gas
- Power Generation
- Process
- Refrigeration
- Transportation

Key Products
- Accumulators
- Advanced actuators
- CO2 controls
- Electronic controllers
- Filter drums
- Hand shutoff valves
- Heat exchangers
- Hose & fittings
- Pressure regulating valves
- Refrigerant distribution
- Safety relief valves
- Smart pumps
- Solenoid valves
- Thermal management systems
- Thermodynamic expansion valves

Filtration
Key Markets
- Aerospace
- Food & beverage
- Industrial plant & equipment
- Life sciences
- Marine
- Mobile equipment
- Oil & gas
- Power generation
- Process
- Transportation
- Water Purification

Key Products
- Analytical gas generators
- Compressed air filters & dryers
- Engine air, coolant, fuel & oil filtration systems
- Fluid condition monitoring systems
- Hydraulic & lubrication filters
- Hydrogen, nitrogen & zero air generators
- Instrumentation filters
- Membrane & filter filters
- Microfiltration
- Sterile air filtration
- Water desalination & purification filters & systems

Fluid Connectors
Key Markets
- Aerial
- Agriculture
- Bulk chemical handling
- Construction machinery
- Food & beverage
- Fuel & gas delivery
- Industrial machinery
- Life sciences
- Marine
- Mobile
- Oil & gas
- Renewable energy
- Transportation

Key Products
- Check valves
- Connectors for low pressure fluid conveyance
- Deep sea umbilicals
- Diagnostic equipment
- Hose couplings
- Industrial hose
- Misting systems & power cables
- PTFE hose & tubing
- Quick couplings
- Rubber & Thermoplastic hose
- Tube fittings & adapters
- Tubing & plastic fittings

Hydraulics
Key Markets
- Agricultural
- Alternative energy
- Construction machinery
- Forestry
- Industrial machinery
- Marine & shipping
- Material handling
- Mining
- Oil & gas
- Power generation
- Refuse vehicles
- Renewable energy
- Truck hydraulics
- Tuf equipment

Key Products
- Accumulators
- Cartridge valves
- Electrohydraulic actuators
- Human machine interfaces
- Hybrid drives
- Hydraulic cylinders
- Hydraulic motors & pumps
- Hydraulic systems
- Hydraulic valves & controls
- Hydraulic steering
- Integrated hydraulic circuits
- Power take-offs
- Power units
- Rotary actuators
- Sensors

Instrumentation
Key Markets
- Analytical Instruments
- Analytical sample conditioning products & systems
- Chemical injection fittings & valves
- Fluoropolymer chemical delivery fittings, valves & pumps
- High purity gas delivery fittings, valves, regulators & digital flow controllers
- Industrial mass flow meters/ controllers
- Permanent no weld take fittings
- Precision industrial regulators & flow controllers
- Process control double block & bleeds
- Process control fittings, valves, regulators, & manifold valves

Seal
Key Markets
- Aerospace
- Chemical processing
- Consumer
- Fluid power
- General industrial
- Information technology
- Life sciences
- Microelectronics
- Military
- Oil & gas
- Power generation
- Renewable energy
- Telecommunications
- Transportation

Key Products
- Dynamic seals
- Elastomer o-rings
- Electro-medical instrument design & assembly
- EMI shielding
- Exhausted & precision cut, fabricated elastomeric seals
- High temperature metal seals
- Homogeneous & inserted elastomeric shapes
- Medical device fabrication & assembly
- Metal & plastic retained composite seals
- Shaped optical windows
- Silicone tubing & extrusions
- Thermal management
- Vibration damping